
Page	1	of	14	

Page	2	of	14	

ECLIPSE API
Version	1.0	

Revision	E			|			7.31.2019	

	
Overview	 2	

Eclipse	API	Example	Applications	 3	

Advantages	of	Eclipse	API	 3	

ECLIPSE	Setup	Overview	 3	

Example	Applications	 5	

Connecting	to	Eclipse	Devices	 7	

ECLIPSE	Protocol	Layout	 8	

ATLAS	Control	(Send)	Definitions	 9	

ATLAS	Control	(Read)	Definitions	 9	

PORTAL	SOLO	Control	Reboot	Request	 11	

PORTAL	SOLO	Control	Status	Request	 11	

UI	Control	(Read)	Definitions	 12	
	

	

Overview

The	ECLIPSE	API	is	a	USB	protocol	interface	that	allows	query,	interaction,	and	control	of	
compatible	Redrock	Eclipse	products	for	adding	lens	control	and	user	interface	(UI)	
elements	to	third	party	applications	and	products.		

Redrock	Eclipse	products	natively	use	the	CAN	bus	to	communicate	and	coordinate	
between	each	other.	The	Eclipse	API	enables	third	party	app	and	product	developers	access	
to	the	CAN	bus	to	interact	with	Redrock	products	to	enhance	or	extend	their	own	
applications.		

Redrock	Eclipse	products	currently	compatible	with	the	Eclipse	API	include:	

Page	3	of	14	

● ATLAS	lens	motors	
● NAVIGATOR	7-in-1	controller	
● SATELLITE	(V2	and	later)	
● COMMANDER	Handheld	FIZ	controller	

Eclipse	API	Example	Applications	

The	Eclipse	API	offers	unprecedented	flexibility	to	add	lens	controls	and	UI	components	to	
custom	and	commercial	applications.	Examples	of	these	applications	include:	

- Lens	controls	(focus,	iris,	and/or	zoom)	for	robotic	arms	and	motion	control	(moco),	
including	keyframing	and	interactive	setups	

- Lens	controls	for	custom	applications	such	as	light	field	cameras	
- UI	controls	for	Real-time	production	performance	capture	(e.g.,	capturing	focus	

pulls	and	camera	control	for	realistic	camera	playback)	
- UI	controls	for	game	engines	such	as	Unity	and	Unreal	(including	virtual	camera	

controls)		

Advantages	of	Eclipse	API	

Eclipse	products	communicate	using	state-of-the-art	CAN	bus,	the	same	core	technology	
that	is	used	in	autonomous	cars	and	real-time	sensing	applications.	Eclipse	API	uses	a	
broadcast	messaging	style	Instead	of	point-to-point	or	round	robin	approaches	to	
maximize	performance	and	flexibility.	A	single	message	format	contains	everything	needed	
to	query,	interact	with,	and	control	Redrock	products	on	the	CAN	bus.	

Advantages	of	the	Eclipse	API	and	communications	framework	include:	

- High	performance,	real-time	environment	that	is	faster	and	more	reliable.	
- Easy	to	integrate	with	using	simple	message	formats	in	a	broadcast	style	messaging,	

and	can	be	embedded	with	other	motion	such	as	robotic	arm.	
- Technology	designed	from	the	ground	up	for	robotics	and	remote-use	applications	
- Modern	technology	-	meet	your	needs	now,	with	room	to	grow	using	additional	

hardware	and	advancements	that	can	be	simply	plugged	in	to	the	CAN	bus	
- Features	and	hardware	to	make	setup	and	keyframing	easy	
- Extensible	-	easy	to	add	additional	motors	or	controls	just	by	plugging	them	in	

	

Page	4	of	14	

ECLIPSE Setup Overview

Eclipse	CAN	bus	uses	a	high	speed	broadcast	style	network	where	all	devices	are	listening	
for	messages.		

Below	is	an	example	of	how	components	are	connected:	

1. PC	is	connected	via	standard	USB	
2. USB	is	converted	to	CAN	via	Redrock	Portal	Solo		
3. All	Redrock	products	are	connected	via	CAN	bus,	and	share	power	and	

communications	as	soon	as	they	are	connected	
4. UI	components	are	also	available	to	control	or	be	queried	

Page	5	of	14	

5. Advanced	applications	for	autofocus	and	range-finding	are	available	with	the	Halo	
Explorer	laser	rangefinder	

	

Example Applications

Eclipse	API	can	be	used	in	many	applications	to	add	lens	and	UI	controls.	Here	are	some	
typical	examples:	

1. Integrating	lens	control	with	Robotic	arms/	Moco:	Eclipse	API	can	be	used	in	
during	setup/keyframe	to	interactively	read	and	set	the	motor	positions.	During	

Page	6	of	14	

runtime	the	robot	control	or	custom	controller	can	be	used	to	feed	real-time	motor	
position	to	Atlas	motors.	(Blue	lines	indicate	USB	communications,	red	indicates	
CAN)	

	

2. Custom	camera	applications	that	are	driven	by	a	computer	application	(such	as	
advanced	3D	and	light	field	cameras):	Custom	PC	applications	can	directly	drive	lens	
control	motors	in	realtime

	

Page	7	of	14	

	

3. Real-time	performance	capture	of	production	crew	(such	as	CG	movies	where	
camera	movement,	lens	control,	etc.	is	all	recorded	for	digital	playback	via	Unreal	or	
Unity	game	engines):	in	more	advanced	applications,	Redrock	UI	controllers	are	
used	to	stream	real-time	performance	of	the	controller,	such	as	pulling	focus,	
changing	zoom,	adjusting	camera	pan/tilt,	etc.	these	are	addressable	and	behave	
nearly	identical	to	lens	control	motors	from	an	app	development	perspective	

	

Page	8	of	14	

Connecting to Eclipse Devices

Connection	to	ECLIPSE	Devices	requires	PORTAL	SOLO.	Portal	Solo	is	Redrock’s	product	
for	accessing	the	Eclipse	CAN	network	via	USB	virtual	comm	port.		
	
NOTE:	When	installing	Portal	Solo	onto	your	computer,	the	FTDI	(USB)	Driver	for	Windows	
my	require	“Load	VCP”	to	be	enabled	in	the	device’s	properties	in	Window’s	Device	
Manager.	

ECLIPSE	API	v1.0	supported	USB	Serial	Port	Settings	(115200	8-N-1):	

Baud	Rate	 115200	bps	

Data	Bits	 8	

Parity	 None	

Stop	Bits	 1	

Flow	Control	 Not	used.	

Page	9	of	14	

ECLIPSE Protocol Layout

The	Eclipse	API	is	essentially	understanding	and	using	our	Eclipse	universal	message	
format.		

There	are	two	main	uses	of	the	message	-	Send	(to	set	values)	and	Read	(to	receive	values).		

When	using	the	Send	message,	that	last	field	value	determines	if	a	receive	message	will	be	
sent	back.	In	real-time	playback	where	status	is	not	required,	the	return	would	be	turned	
off	to	minimize	network	traffic	and	latency.		

ATLAS	Control	(Send)	Definitions	

Field	
#	

Field	 Value	 Lengt
h(byt
es)	

Range	 Function	

1	 Header	 	“RRM”	 3	 3	 Header	

2	 Packet	
Type	

	“G”	 1	 1	 Packet	Type	

3	 Packet	
Length	

8	bit	Unsigned	Integer	 1	 5-255	 Length	of	final	packet	(Including	
Header	&	Packet	Type)	

4	 Focus	 16	bit	Unsigned	
Integer	

2	 0-0xFFFF	 Focus	Value	(Position)	

5	 Iris	 16	bit	Unsigned	
Integer	

2	 0-0xFFFF	 Iris	Value	(Position)	

6	 Zoom	 16	bit	Unsigned	
Integer	

2	 0-0xFFFF	 Zoom	Value	(Position)	

7	 AutoCal	 8	bit	Unsigned	Integer	 1	 0-1	 Start	Auto	Calibration	

8	 RTR_M	 8	bit	Unsigned	Integer	 1	 0-1	 Return	Motor	Packet	

ATLAS	Control	(Read)	Definitions	

In	order	to	receive	this	Field	#	8	needs	to	be	set	to	1	on	the	“Send”	packet.	

Page	10	of	14	

Fiel
d	#	

Field	 Value	 Length	
(Bytes)	

Range	 Function	

1	 Header	 	“RRM”	 3	 3	 Header	

2	 Packet	Type	 	“M”	 1	 1	 Packet	Type	

3	 Packet	Length	 8	bit	Unsigned	
Integer	

1	 5-255	 Length	of	final	packet	(Including	
Header	&	Packet	Type)	

4	 Focus	 32	bit	Unsigned	
Integer	

4	 0-
0xFFFFFFF

F	

Focus	Value	(Position)	

5	 Focus	CAL	
Status	

8	bit	Unsigned	
Integer	

1	 0-1	 Focus	Calibration	Status	

(0	=	Offline,	1	=	Online,	3	=	
Calibrated)	

6	 Iris	 32	bit	Unsigned	
Integer	

4	 0-
0xFFFFFFF

F	

Iris	Value	(Position)	

7	 Iris	CAL	Status	 8	bit	Unsigned	
Integer	

	 0-1	 Iris	Calibration	Status	

(0	=	Offline,	1	=	Online,	3	=	
Calibrated)	

8	 Zoom	 32	bit	Unsigned	
Integer	

4	 0-
0xFFFFFFF

F	

Zoom	Value	(Position)	

9	 Zoom	CAL	
Status	

8	bit	Unsigned	
Integer	

1	 0-1	 Zoom	Calibration	Status	

(0	=	Offline,	1	=	Online,	3	=	
Calibrated)	

10	 Explorer	Value	 16	bit	Unsigned	
Integer	

2	 0-0xFFFF	 Distance	to	subject	in	inches	

There	are	additional	message	formats	for	various	setup	and	configuration	tasks	as	well:	

Page	11	of	14	

PORTAL	SOLO	Control	Reboot	Request	

Field	
#	

Field	 Value	 Lengt
h	

(bytes
)	

Range	 Function	

1	 Header	 	“RRM”	 3	 3	 Header	

2	 Packet	Type	 	“R”	 1	 1	 Packet	Type	

3	 Packet	Length	 8	bit	Unsigned	
Integer	

1	 5-255	 Length	of	final	packet	(Including	
Header	&	Packet	Type)	

PORTAL	SOLO	Control	Status	Request	

Fiel
d	#	

Field	 Value	 Length	
(bytes
)	

Range	 Function	

1	 Header	 	“RRM”	 3	 3	 Header	

2	 Packet	Type	 	“S”	 1	 1	 Packet	Type	

3	 Packet	Length	 8	bit	Unsigned	
Integer	

1	 5-255	 Length	of	final	packet	
(Including	Header	&	Packet	
Type)	

Page	12	of	14	

UI	Control	(Read)	Definitions	

In	response	to	the	Status	Packet	

Field	
#	

Field	 Value	 Len
gth(
byte
s)	

Range	 Function	

1	 Header	 	“RRM”	 3	 3	 Header	

2	 Packet	Type	 	“U”	 1	 1	 Packet	Type	

3	 Packet	Length	 8	bit	
Unsigned	
Integer	

1	 5-255	 Length	of	final	packet	
(Including	Header	&	Packet	
Type)	

4	 Knob	1	 16	bit	
Unsigned	
Integer	

2	 0-0xFFFF	 Focus	Value	(Position)	

5	 Knob	2	 16	bit	
Unsigned	
Integer	

2	 0-0xFFFF	 Iris	Value	(Position)	

6	 Zoom	 16	bit	
Unsigned	
Integer	

2	 0-0xFFFF	 Zoom	Joystick	Value	
(Position)	

7	 NAV	Joystick	X	 16	bit	
Unsigned	
Integer	

2	 -0x800	-	0x800	 Navigator	Joystick	X	
(left/right)	Value	(Position)	

8	 NAV	Joystick	Y	 16	bit	
Unsigned	
Integer	

2	 -0x800	-	0x800	 Navigator	Joystick	Y	
(up/down)	Value	(Position)	

9	 SAT	Joystick	X	 16	bit	
Unsigned	
Integer	

2	 -0x800	-	0x800	 Satellite	Joystick	X	
(left/right)	Value	(Position)	

Page	13	of	14	

10	 SAT	Joystick	Y	 16	bit	
Unsigned	
Integer	

2	 -0x800	-	0x800	 Satellite	Joystick	Y	
(up/down)	Value	(Position)	

11	 NAV	Button	 8	bit	
Unsigned	
Integer	

1	 0-0xFF	 Navigator	button	bitmap	

12	 NAV	Dial	 8	bit	
Unsigned	
Integer	

1	 0-0xFF	 Navigator	dial	bitmap	

13	 Battery	 8	bit	
Unsigned	
Integer	

1	 0-0xFF	 Battery	voltage	(123[0x7B]	=	
12.3	Volts)	Implied	Decimal	

14	 Record	Enabled	 8	bit	
Unsigned	
Integer	

1	 0-1	 	Recording	Enabled	

Page	14	of	14	

Copyright	©	2019	Redrock	Microsystems,	LLC	all	rights	reserved	

Unity,	Unreal,	Autodesk,	and	Maya	trademarks	are	property	of	their	respective	holders	

